

Resilience and the Impact on Roofing

Provider Number: A001 Course Number: #S23RIR Presenter: Brian P. Chamberlain, CSI, SPRI, IIBEC Date: March 29, 2023

Collaboration Partner

Learning Objectives

At the conclusion of this educational activity, the learner will be able to:

1. Learn the definitions of Resilience and how these definitions from organizations differ.

2. Review of standards and how they can be used to go beyond the building code.

3. Case examples of real-world projects that incorporate a redundancy with consideration of worse case weather events.

4. Offer a check list on what to consider based on specific concerns by the building owner and/or the use of the building.

Carlisle is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for both AIA & non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This presentation is protected by US and International Copyright laws. Reproduction, distribution, displayand use of the presentation without written permission of the speaker is prohibited.

© Carlisle Construction Materials 2023

Introduction

Defining Resiliency

Oxford Languages defines resilience as...

- 1. The capacity to recover quickly from difficulties, toughness.
- 2. The ability of a substance or object to spring back into shape; elasticity.

Right now, there are many definitions of resiliency, depending on organizational or industry specific perspectives.

- Preparation for terrorism
- City infrastructure
- Whole building and surrounding terrain
- And a Building Systems Focus

All have the basic premise: If a sever event should occur, the resulting damage is minimized with the goal to get all activities back to normal ASAP.

Department of Homeland Security - DHS

Eighteen Critical Infrastructure Sectors Identified in 2009

Food & Agriculture	Banking and Finance	Chemical
Commercial Facilities	Communications	Critical Manufacturing
Dams	Defense Industrial Base	Emergency Services
Energy	Government Facilities	Information Technology
Healthcare & Public Health	National Monuments	Nuclear Facilities
Postal & Shipping	Transportation System	Water

When essential building or infrastructure systems are damaged, a ripple effect spreads and disrupts a communities' ability to function.

Defining Resiliency

Contributors

U.S. Government Agencies

- DHS
- NIBS
- National Academy of Science
 - NOAA
 - White House Conf.
- The Canadian Government - Canadian Research Council- NRCC

- Non-Governmental Organizations
 - ICC
 - USGBC
 - Resilience Building Coalition

- Trade AssociationsBOMA
 - AIA

Defining Resiliency

US Department of Homeland Security and Federal Emergency Management Agency

The Ability to Adapt to Changing Conditions and <u>Withstand and Rapidly Recover</u> from Disruption due to Emergencies

> The Key Phrase "Withstand and Rapidly Recover" Is Now Shaping The Resilience Discussion

Super Dome, New Orleans, LA

The Building Industry Report on Resiliency

A Coalition of the AIA and NIBS (National Institute of Building Standards) Plus 19 other Members and Code Agencies.

Develop "Whole-systems Resilient Design"

ASCE, NIST, NRCA, ERA, IIBEC and others.

Develop Codes and Policies to Advance Resiliency
Provide Guidance Beyond the Baseline-Safety Codes

Performance-based design set performance goals that are more stringent than the minimum standards required in current model codes and standards.

Code & Standards

Buildings & Other Structures: minimum performance criteria for design-level hazard events.

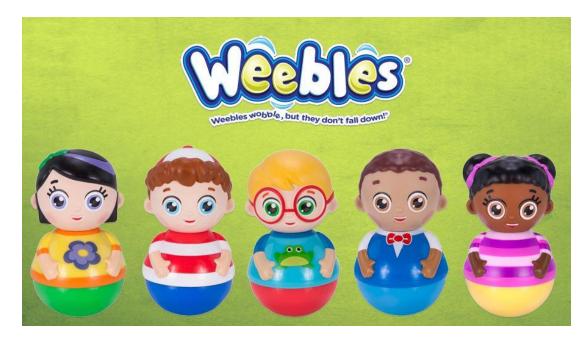
Accounts for: wind (non-tornadic), snow, seismic & fire events

Each Code Cycle: Improve Health & Safety of the Occupant & the Surrounding Enviroment

Champlain Towers South Surfside, FL - 2021 Miami-Dade Fire Rescue Department

New York City, NY - 2022 Ronemus & Vilensky

Boise, ID - 2017 Rapid Aerial


Thomas Lee Smith's definition:

"Wind-resilient building: A building that is capable of resisting damage from wind and wind-driven rain; furthermore, if damaged, the building can be readily repaired so that important functions are maintained during and/or after a windstorm."

Laverne Dalgleish, executive director of the Air Barrier Association of America, once said about the industry in general:

"This is not rocket-science...it's worse."

Weebles – (Source: Jazwares)

Options for Determining Uplift

Where to start?

Uplift Resistance – Adoption by State

States
AL, AK, CA, CT, FL, GA, HI, ID, MD, MN, MS, MT, NE, NH, NJ, NY, ND, OK, OR, PA, RI, SC, SD, UT, VA, WA, WV & WY Total 28 States
AR, IN, IA, KY, LA, ME, MA, MI, NC, NM, OH, TN, TX, VT & WI Total 15 States & DC*
0
AZ, CO, DE, IL, KS, MO, NV Total 7 States

International Code Council (January 2023)

ASCE 7-2005

$q_z = 0.00256 \times K_Z \times K_{Zt} \times K_d \times V^2 \times I$

ASCE 7-2010

 q_z = 0.00256 x K_Z x K_{Zt} x K_d x V²

I = Importance Factor was incorporated into V (Ultimate Winds)

ASCE 7-2016

 $qz = 0.00256 \times K_Z \times K_{Zt} \times K_d \times K_e \times V^2$

K_e = Ground Elevation Factor

ASCE 7-2022

 $qz = 0.00256 \times K_Z \times K_{Zt} \times K_e \times V^2$

K_d was moved to Design Wind Pressure Calculations

"Safety Factor"

ASCE 7 <u>Does Not mention one for Cladding</u>

Minimum IBC criteria is to meet the calculated uplift without a safety factor.

"Safety Factor"

Industry use of a Safety Factor

Apply the SF to the <u>results</u> of ASCE

ASCE result = 45-psf x 2 = 90-psf

Agencies that use this method

Roof Wind Designer by NRCA, MRCA, & NERCA

FM PLPDS* 1-28

roperty Loss Prevent

ASTM D6630

"Safety Factor"

Industry use of a Safety Factor

Apply the SF to the Rated Assembly by <u>dividing</u>

Poted accomply = 00 pcf/2 = 45 pcf

Agencies that use this method

Miami-Dade Building Code Compliance Office

State of Florida

Increasing local wind speed

Two Steps Greater Local Ultimate Wind Speed

EF5 Tornado (250-mph)

Hurrisons Deced Mind Creade

Saffir-Simpson Hurricane Category	Basic 3 – sec gust wind speed*
Cat 1	82-108 mph (37-48 m/s)
Cat 2	108-130 mph (48-58 m/s)
Cat 3	130-156 mph (58-70 m/s)
Cat 4	156-191 mph (70-85 m/s)
Cat 5	> 191 mph (> 85 m/s)

Example Buildings

Data Centers

Storm Shelters

Openings in buildings can over pressurize the roof

Getting Carried Away: Example:

Project Parameters: Dimensions: 2000-sqs (400'x500') **Building Height:** 50-ft

Wind Load (ASCE 7-10)

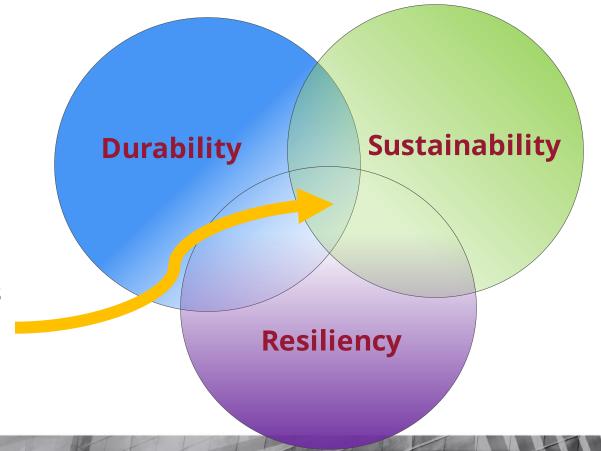
- Basic wind speed: 120-mph (Vult) increased to 160-mph
- Occupancy Category: IV
- Exposure: D
- Enclosed
- Safety Factor 2
- Assembly uplift rating listed in FBC Product Approvals

Results

Zone 1: 167-psf Zone 2: 281-psf Zone 3: 422-psf Assembly in Zone 3 must have passed **844-psf** following ANSI/FM 4474 uplift testing

> Roof Design total safety: x4 + an additional 40-mph

Five Factors


- Durability
- Training
- Sustainability
- Resiliency Design
- Cost

The Goal

Including

- Materials/ Assemblies
- Training & Installation
- Testing & Standards

Definitions of Terms

Durability:

This includes products, roof assemblies, and training so when the installation is complete, it could exceed the building code

Sustainability:

Roof design considerations beyond durability, which includes environmental concepts such as cradle-to-cradle, life cycle assessment, on material, energy savings, & recyclability, etc.

Resiliency:

The roof assembly design to deal with a sever natural event with the intent that any damage requires minimum repairs or disruption to the operation of the building

Training

NRCA: ProCertification®

Manufacturers

- Single-Ply
- Modified
- BUR
- Metal
- Foams & Coating
- Etc.

Training

Types of Training Programs

- New Applicator Training
- Certifications based on materials
- Installation Type & Method
- Classroom and Hands On

Training

Experience Applicator Training

- Refresher
- Advanced installation methods
- Time saving options
- New Technology

Job-Site Assistance

Recommended training once a year

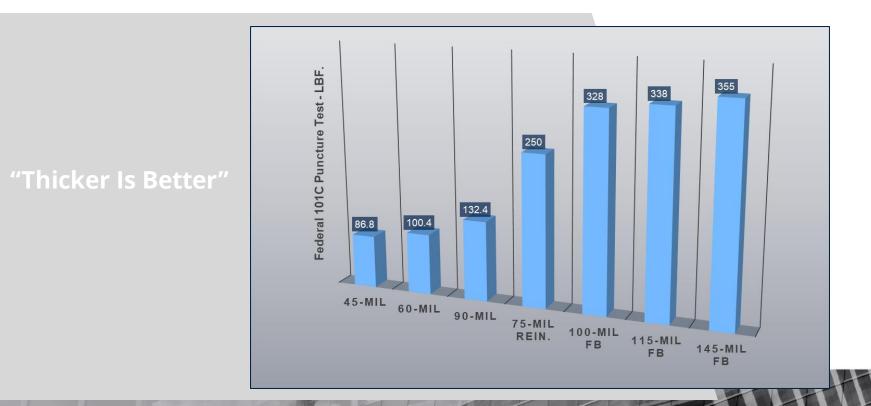
Membrane Durability

Membrane History

Early 1980's, two EPDM membranes where popular.

Today 250 types of membranes, including TPO, PVC, EPDM, Reinforced, Non-Reinforced, Fleece/Felt Backed membranes.

Add on the changes with modified, BUR, etc.



Roof System Components

- Securements: Fasteners & Adhesives
- Air Barriers & Vapor Retarders
- Insulation: Polyisocyanurate,
 Extruded Polystyrene, Expanded
 Polystyrene, Mineral Wool &
 Lightweight Insulated Concrete
- Cover Boards
- Adhesives
- Membranes

Adhesive Options for Membrane

Standard Bonding Adhesives

- Non-VOC compliant
- Solvent-based

Low-VOC Adhesives

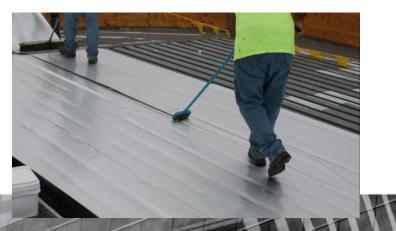
- < 250 g/l VOC
- Utilize different solvents
- Could be water-based

VOC-free Adhesives

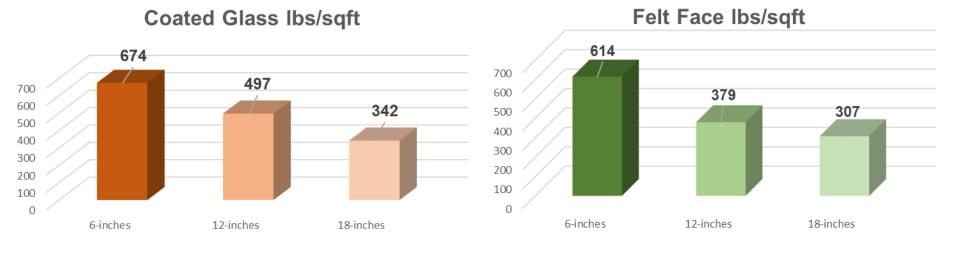
- Zero VOC
- Urethane Adhesives

Commercial Roof Cover Board Choices

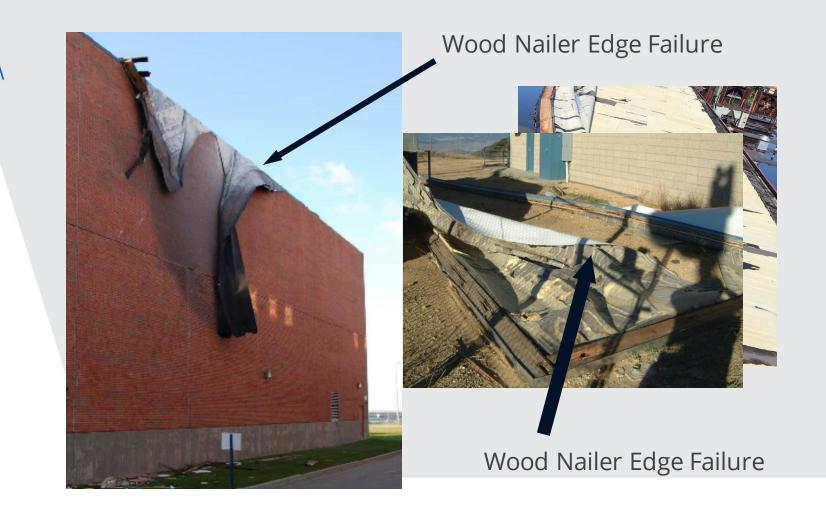
- Increased Hail Resistance
- Increase Fire
 Performance
- Increased Wind Uplift

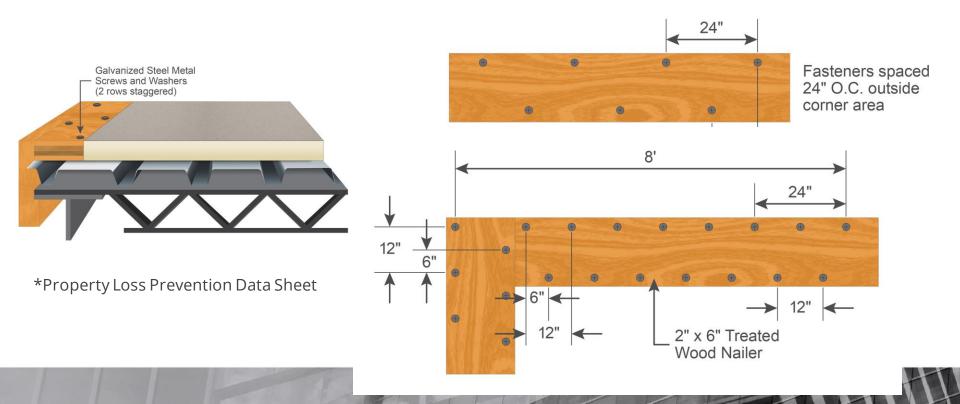

Recycled Cover Boards

Air Barriers & Vapor Retarders


Prevents air and moisture from migrating into roofing system

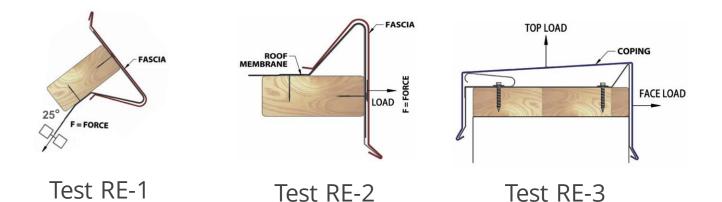
- Controls vapor movement from potential condensation
- Sealed correctly can assist in saving energy
- Some products can be used as a temporary roof



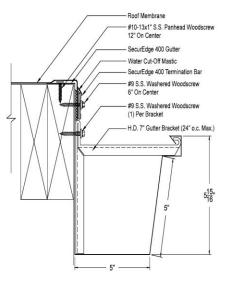

Adhesive Testing Program (Polyisocyanurate)

Midwest Roofer: Findings of Low-Rise Foam, MRCA & WJE research, 2020

FM PLPDS* 1-49: Wood Nailer Securement



First Line of Defense Against Wind

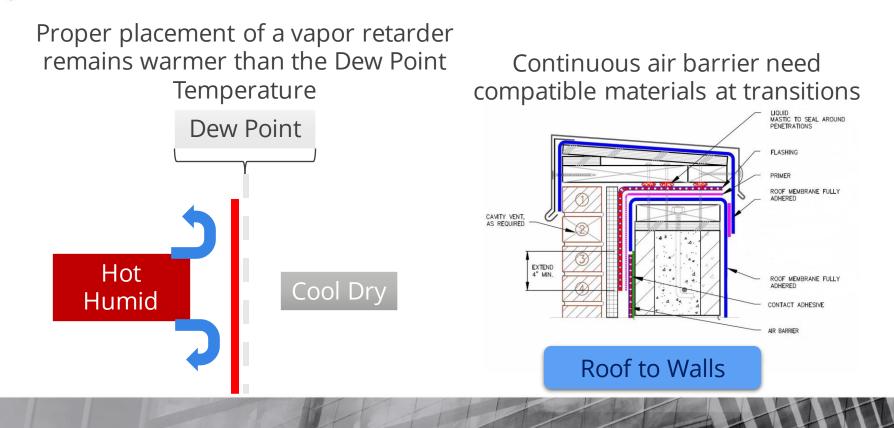

International Building Code (IBC)

Section 1504.5 Edge Securement for low-slope roofs. Low-slope membrane roof system metal edge securement ...tested for resistance in accordance with ANSI/SPRI ES-1...

ANSI/SPRI GT-1 Standard

Tests like ANSI/SPRI ES-1
ANSI/GT-1 Standard has been adopted into the IBC 2021

Additional Accessories


Pressure Sensitive Products

Tapered Insulation:

Locate roof drains where maximum deck deflection is anticipated

Vapor Drive / Air Leakage

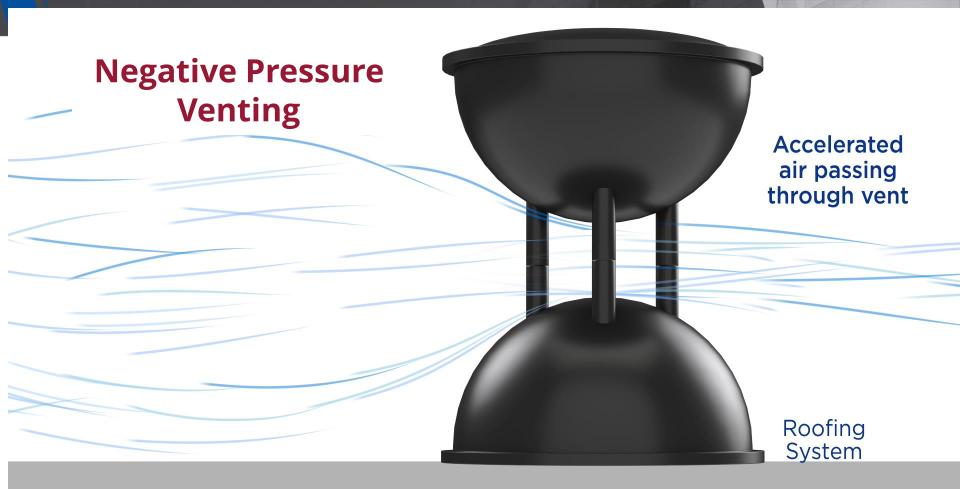
Solar Ready Roofs


The right components ensure the owner receives anticipated ROI

BEST PRACTICES

- Thicker membrane such as .090 mil or .080 mil
- Cover board attached with adhesives.
- Protection layer under any weighted solar panel racks or support systems.

Roof Garden & Patios



Roof System Advancements

Another "Fully Adhered" Option

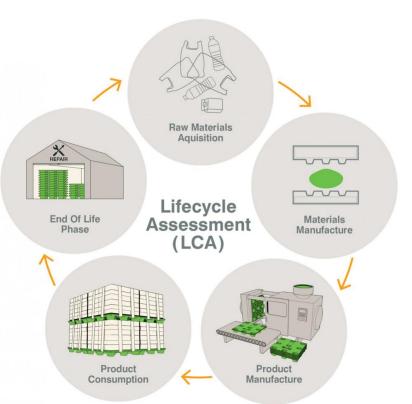
Utilizes hook and loop technology to "adhere" membrane

Loop

Hook

"Fully-Adhered" Membrane With:

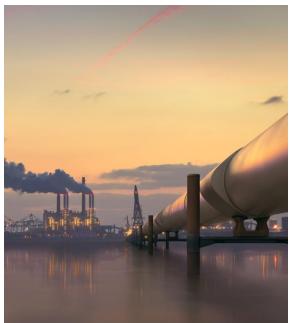
- <u>NO</u> VOC's
- <u>NO</u> Odor
- <u>NO</u> Temperature Restrictions
- Uplift as great as 225-psf


Sustainability: Three Main Tenets

- Minimize burden on the environment by using the earth's resources responsibly
- 2. Conserve energy by improving thermal efficiency
- 3. Extend roof lifespan by improving long term performance

Life Cycle Assessment

- Longevity of product life.
- Extending the lifespan of the assembly means fewer resources consumed during this time period.
- The product which is designed to last and perform the longest mitigates the impact on the environment.



Managing Environmental Impact

Advances in technology improve sustainability efforts in the following ways:

- Reduction of construction waste
- Reduction of energy use
- Minimizing harmful fumes or chemicals
- Maximizing recycling

Meeting needs today without compromising the future generations to meet their needs.

Pre-Consumer Recycling Roofing Materials

Pre-Consumer Recycling Roofing Product Examples:

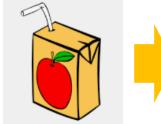
EPDM = 5%

TPO & PVC = 10%

Insulation = up to 10%

Metal = up to 15%

EPS = up to 25%


Recyclable Products

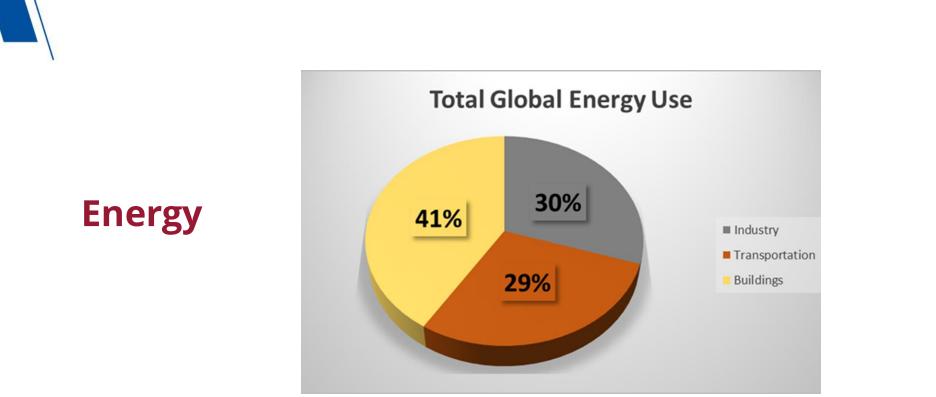
End use products for recycled EPDM.

Crushed Recycled Tumbled Glass

100% Recycled Cover Boards

Waste Reduction & Landfill Diversion

Insulation Recycling


- Polyisocyanurate
- Expanded Polystyrene (EPS)

Jobsite Recycling

- Packaging
- Recycling Guides

Minimum R-Value (Non-Residential, Above Roof Deck)

Zones	ASHRAE 90.1				ASHRAE 189.1					IBC – IECC				IGCC			
	2010*	2013*	2016*	2019*	2009	2011*	2014*	2017*	2020*	2012*	2015*	2018*	2021*	2012*	2015*	2018*	2021*
0	-	-	25	25	-	-	-	27.02	27.02	-	-	-	20	-	-	27.02	27.02
1	15	20	20	20	20	20	20	21.9	21.9	20	20	20	20	22.3	21.1	21.9	21.9
2	20	25	25	25	25	25	25	27.02	27.02	20	25	25	25	22.3	26.3	27.02	27.02
3	20	25	25	25	25	25	25	27.02	27.02	20	25	25	25	22.3	26.3	27.02	27.02
4	20	30	30	30	25	25	35	35.08	35.08	25	30	30	30	27.8	31.6	35.08	35.08
5	20	30	30	30	25	25	35	35.08	35.08	25	30	30	30	27.8	31.6	35.08	35.08
6	20	30	30	30	30	30	35	35.08	35.08	30	30	30	30	33.5	31.6	35.08	35.08
7	20	35	35	35	35	35	40	38.98	38.98	35	35	35	35	39	36.9	38.98	38.98
8	20	35	35	35	35	35	40	38.98	38.98	35	35	35	35	39	36.9	38.98	38.98

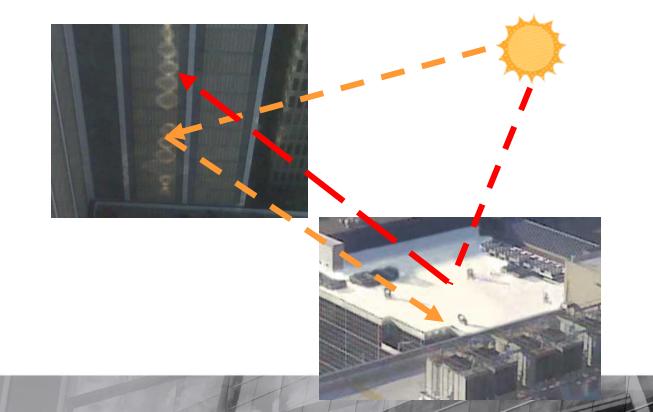
Building Insulation

INSULATION BEST PRACTICES

- Properly insulate building for its' climate zone.
- Increase R-value by specifying more insulation.
- Stagger insulation joints to reduce energy loss through gaps.
- Improved energy efficiency reduces pollutants.

Thermal Loss of rigid insulation which has been mechanically fastened.

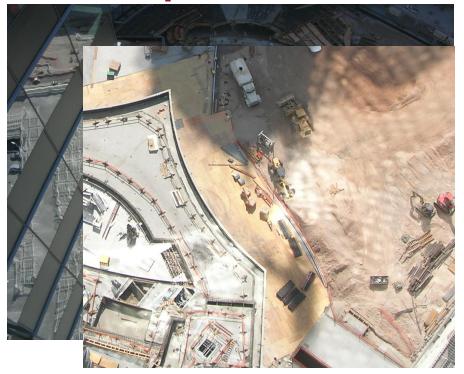
Energy Efficiency

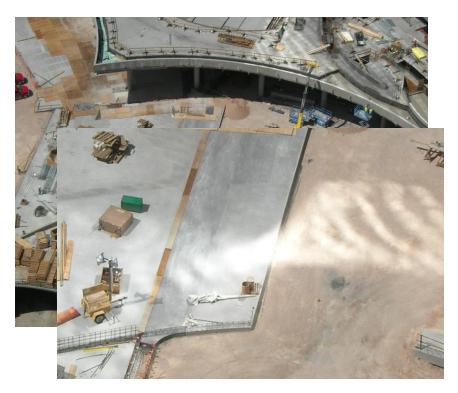

Geography must be considered when looking at energy usage.

There is no "magic pill".

Warm Roofing **Cool Roofing**

Deflection & Concentration of UV Loads





Next to a glass wall

Curved Glass

Swanky new Vegas hotel's 'death ray' proves inconvenient for some guests

By Brett Michael Dykes brett Michael Dykes - Wed Sep 29, 12:00 pm ET

Vdara Las Vegas, NV

Walkie-Talkie London, England

Museum Tower Dallas, TX

Resiliency

WIND CATEGORY 1 Winds: 74-95 mph ■ Very dangerous winds will produce some damage.

WIND CATEGORY 2 Winds: 96-110 mph Extremely dangerous winds will cause extensive damage.

WIND CATEGORY 3 Winds: 111-129 mph Devastating damage will occur.

WIND CATEGORY 4 Winds: 130-156 mph Catastrophic damage

WIND CATEGORY 5 Winds more than 157 mph Catastrophic damage will occur.

SOURCE: NATIONAL WEATHER SERVICE

Standards

Prestandard for Performance-Based — Wind Design —

American Society of Civil Engineers

ASCE

ASCE/SEI **7-22**

ASCE

SEI STRICTURAL ENGINEERING INSTITUTE

Minimum Design Loads and Associated Criteria for Buildings and Other Structures

A subset of the end of the stating of all heights any end of the systems of the stating of the systems of th

M. J2.1.2.2 Tornado Loads on Component and Chadding Y Tornado bods on the CRC of all buildings and other structures that the determined using rese or mere of the following preculture, as modified by Chapter 32:

 Analytical Procedures as specified in Pars 1 through 5, as appropriate of Chapter 20, for buildings on other structures mentics the majoritometa specified theories of 2. Wind Turnel Procedure for all buildings and other emetures as assocified in Chapter 31, for buildings-morting the majorization specified in theorem.

Sci35 Perturbation-taskin Proceedings (cettas) and c buildings and other statistics using performance-base procedures shall be permitted subject to the apported of the Authority Harring Archickens. The performance-based turning design procedures used shaf, as a initiation, certeins to Section (1.3.1) and be decommend and submitted to the Authority Horing Jurisdiction in accordance with Section (3.3.3)

353

32.2 DEFINITION

31.1.2 Presided Precedures The design irrada loads for hidding and other streatures, including the MWRS and CSL channel indexed, doil to advantual indig our of the marking and other streatures, including the MWRS and CSL channel indexed, doil to advantual indig our of the ASC TORNADO DESIGN CIGONATABASE The ASCE.

Septembergenetzen, Streiner Streiner, Streiner,

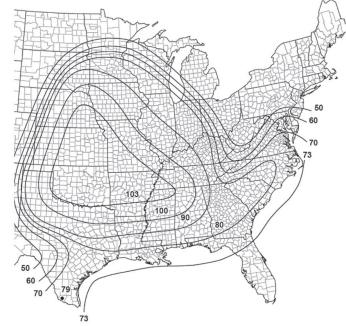
Minimum Design Loads and Associated Criteria for Buildings and Other Structures

Guidance for Community and Residential Safe Rooms

FEMA P-361, April 2021 Fourth Edition

ASCE 7-22 & Tornados

Minimum Design Loads and Associated Criteria for Buildings and Other Structures


> CHAPTER 32 TORNADO LOADS

Tornado Loads

4. Islands, coastal areas, and land boundaries outside the last contour shall use the last tornado speed contour.

5. Tornado speeds correspond to approximately a 1.7% probability of exceedance in 50 years (annual exceedance probability = 0.00033, MRI = 3,000 years).

6. Location-specific tornado speed is permitted to be determined using the ASCE Tornado Design Geodatabase, available at the ASCE 7 Hazard Tool (http://asce7hazardtool.online) or approved equivalent.

Figure 32.5-2D (Continued). Tornado speeds for Risk Category IV buildings and other structures, for effective plan area of 40,000 ft² (3,716 m²).

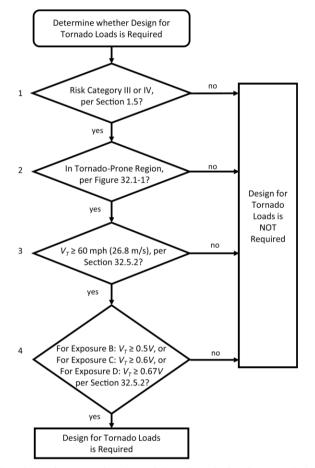
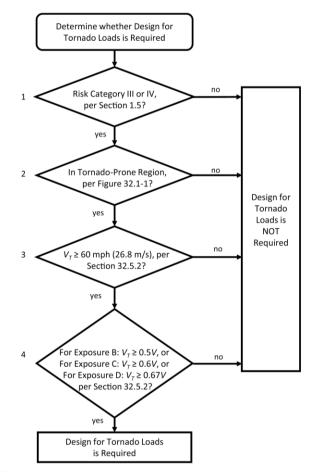



Figure 32.1-2. Flowchart of process for determining when design for tornado loads is required.

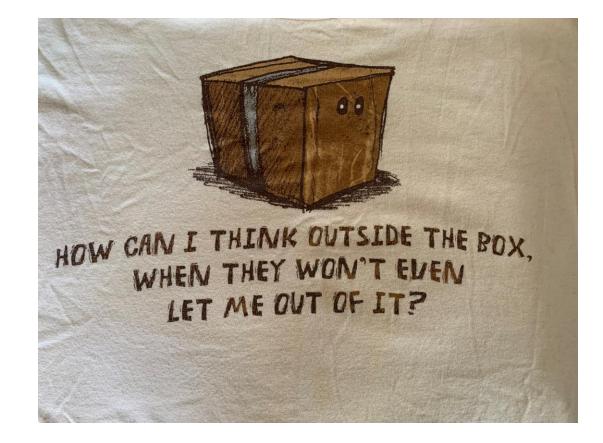
Hospital: Risk Category IV Chicago, IL ASCE 7-22 Wind Speed: 119-mph Effect Plan Area: 40,000 sqft Tornado Wind Speeds (Vt): 82-mph Risk Category III or IV (Yes) In Tornado-Prone Region (Yes) Vt ≥ 60-mph (**Yes**) Exposure B: 82-mph \geq 59.5-mph (Yes) Exposure C: 82-mph \geq 71.4-mph (Yes) Exposure D: 82-mph \geq 79.7-mph (Yes)

Tornado Loads

Hospital: Risk Category IV Miami, FL ASCE 7-22 Wind Speed: 189-mph Effect Plan Area: 40,000 sqft Tornado Wind Speeds (Vt): 73-mph Risk Category III or IV (Yes) In Tornado-Prone Region (Yes) Vt ≥ 60-mph (**Yes**) Exposure B: 73-mph \geq 94.50-mph (No) Exposure C: 73-mph \geq 113.4-mph (No) Exposure D: 73-mph \geq 126.6-mph (No)

Wind Loads

Figure 32.1-2. Flowchart of process for determining when design for tornado loads is required.


10,000,000-year MRI means

1/10000000 chance in one year of wind of this amount may happen. (0.0000001)

Islands, coastal areas, and land boundaries outside the last contour shall use the last tornado speed contour.
 Tornado speeds correspond to approximately a 0.0005% probability of exceedance in 50 years (annual exceedance probability = 0.0000001, MRI = 10.000,000 years).

Innovative Designing

Controlling the Failure Mode

Mid-West Data Center:

Concrete deck Adhered vapor retarder (attachment must meet pressures based on 250-mph)

Additional components (minimum code requirements) Adhered insulation Adhered cover board Adhered membrane

Concern of Unexpected Failure Mode

Mid-West School:

- Steel Deck and structure
- Designed following ICC 500 "Storm Shelter"

Only one area of the school was required to meet these structural pressures

- "Is the roof assembly required to meet these "Storm Shelter" pressures?"
- "Since typical roof assemblies (cladding) only need to meet Allowable, Nominal or Service Pressures, by meeting "Storm Shelter" pressures will there be unexpected stress pressures not compensated on the structural?"

Resiliency Design

Improve Wind Performance

- Strengthen the Roof Deck
- Strengthen the Perimeter Edge (wood Nailers & Air Tightness)
- Use a Robust Edge System
- Incorporate an Air Barrier
- Robust Assembly with Durable Cover board

Design for the Elements

- Positive Drainage with Sufficient Number of Drains & Overflows.
- Increase Flashing / Skirting Height.
- Accommodate for an increased Snow-Load.
- Possible use of sensors for early alert of to activate Snow-Melting.

Redundancy

- Incorporate an Impermeable Roofing Membrane to serve as an Air Barrier / temporary Roof.
- Incorporate Secondary Drainage System at the bottom waterproofing layer (Air Barrier Level).
- Possible use of sensors for early alert of Water infiltration.

Redundancy can Assure Continuous Building Operation After a Catastrophic Event EPDM used as a secondary roof and air

Chernobyl Nuclear Plant & Sarcophagus -Ukraine

Principles for Resilient Design

- Redundant System = More Resilient
- Durability **<u>Strengthen</u>** Resilience
- Resilience <u>Anticipates</u> Interruptions
- Simplicity/Ease of Repairs <u>Quicken</u> the Recovery

Example: Durability, Sustainability, & Resilience

This concludes the American Institute of Architects Continuing Education Systems Course

Thank you for participating! **Questions?**

